Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Massimo Alberti Bambagiotti,^a Bruno Bruni,^b Massimo Di Vaira^b* and Valerio Giannellini^a

^aDipartimento di Scienze Farmaceutiche, Universitá di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy, and ^bDipartimento di Chimica, Universitá di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy

Correspondence e-mail: massimo.divaira@unifi.it

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.003 Å R factor = 0.022 wR factor = 0.047 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*R*)-(–)-Mepivacaine hydrochloride enantiomer: a low-temperature study

Low-temperature structural data are reported for the anaesthetic (2R)-(-)-2-(2,6-dimethylphenylaminocarbonyl)-1-methylpiperidinium chloride, $C_{15}H_{23}N_2O^+ \cdot Cl^-$, which complement existing room-temperature data for the *S* enantiomer. Crystal packing is largely controlled by infinite $N-H \cdots Cl$ hydrogen-bonded chains.

Received 18 January 2005 Accepted 31 January 2005 Online 12 February 2005

Comment

As part of a study of solid-state structural relationships between mepivacaine and its solvates (Giannellini et al., 2005), the structure of the (R)-(-) enantiomer of mepivacaine hydrochloride, (I), has been refined using 180 K diffraction data. The room-temperature structure of the (S)-(+) enantiomer was already known (Csöregh, 1992). No phase transitions are recorded in the course of the 111 K temperature decrease from measurements of the previous study. There is a slightly anisotropic cell-volume reduction, 1.1% overall, the (moderately) largest linear contraction being in the (crystallographic b) direction of the infinite N-H···Cl···H-N chains. Results (Fig. 1, and Tables 1 and 2) are presented using the same labelling criteria of the previous study, for convenience. There is close agreement with the previous results, possibly with a smaller spread of values for chemically equivalent bond distances in the present case.

Experimental

Crystals of (R)-(-)-mepivacaine hydrochloride, suitable for X-ray work, were kindly supplied by Monica Jacobsson (Astra Zeneca R&D, Sweden) and were used as received.

Crystal data

$C_{15}H_{23}N_2O^+ \cdot Cl^-$	Cu $K\alpha$ radiation
$M_r = 282.80$	Cell parameters from 952
Orthorhombic, $P2_12_12_1$	reflections
a = 9.7378 (10) Å	$\theta = 6-58^{\circ}$
b = 10.5790(9) Å	$\mu = 2.10 \text{ mm}^{-1}$
c = 15.2761 (15) Å	T = 180 (2) K
$V = 1573.7 (3) \text{ Å}^3$	Elongated prism, colourless
Z = 4	$0.80 \times 0.30 \times 0.30$ mm
$D_x = 1.194 \text{ Mg m}^{-3}$	

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the structure of the protonated molecule, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ \AA}$

 $\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$

883 Friedel pairs

Extinction correction: SHELXL97

Extinction coefficient: 0.0167 (5)

Absolute structure: Flack (1983),

Flack parameter = 0.023(11)

Data collection

2201 independent reflections
1989 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.030$
$\theta_{\rm max} = 59.0^{\circ}$
$h = -10 \rightarrow 9$
$k = -11 \rightarrow 9$
$l = -15 \rightarrow 16$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.047$ S = 0.962201 reflections 242 parameters Only coordinates of H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0218P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected bond lengths (Å).

N1-C1′	1.494 (2)	N8-C9	1.437 (2)
N1-C2	1.495 (2)	C9-C14	1.396 (2)
N1-C6	1.508 (2)	C9-C10	1.399 (2)
C2-C7	1.526 (2)	C10-C11	1.389 (3)
C2-C3	1.528 (3)	C10-C16	1.505 (3)
C3-C4	1.523 (3)	C11-C12	1.379 (3)
C4-C5	1.512 (3)	C12-C13	1.380 (3)
C5-C6	1.499 (3)	C13-C14	1.391 (2)
C7-O7	1.231 (2)	C14-C15	1.507 (3)
C7-N8	1.335 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\overline{ \begin{matrix} N1-H1N\cdots Cl^i \\ N8-H8N\cdots Cl \end{matrix} }$	0.905 (17) 0.841 (18)	2.182 (18) 2.280 (19)	3.0140 (16) 3.1172 (17)	152.5 (16) 174.1 (17)

Symmetry code: (i) $-x, y - \frac{1}{2}, \frac{3}{2} - z$.

Figure 2

A view of the packing in the proximity of the bc face, showing the system of hydrogen bonds (dashed lines) in the structure. Only the H atoms directly involved in hydrogen bonding are shown.

Although the structure of the (S)-(+) enantiomer was known (Csöregh, 1992), that of the present (R)-(-) enantiomer was determined *ab initio* and the assignment of absolute configuration was checked (Flack, 1983). The material does not diffract strongly and it was deemed that collecting data at θ higher than 58° would not yield improvement. In the refinement, H-atom positions, initially assigned geometrically, were allowed to refine, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C,N)$ or $1.5U_{eq}(\rm C_{methyl})$. C–H bond distances: secondary CH₂ = 0.94 (2)–1.01 (2) Å, methyl CH₃ = 0.90 (2)–1.04 (2) Å, tertiary CH = 0.93 (3) Å, aromatic CH = 0.92 (2)–0.98 (2) Å and N–H = 0.84 (2)–0.90 (2) Å.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2001); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2001); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

- Giannellini, V., Di Vaira, M., Bruni, B., Costantino, F., Bartolucci, G., Coran, S. & Bambagiotti-Alberti, M. (2005). In preparation.
- Csöregh, I. (1992). Acta Cryst. C48, 1794-1798.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Oxford Diffraction (2001). CrysAlis CCD (Version 1.171) and CrysAlis RED (Version 1.171). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Sheldrick, G. M. (1986). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.